当前位置 >> 首页 >> 学习园地
  • 近红外有机光电探测器研究取得进展更多>>

    柔性传感器在穿戴智能电子、具身智能、生物医学成像等众多领域具有广阔的应用前景。基于共轭高分子光敏材料的有机光电探测器(OPDs)具有本征柔性、成本低、功耗低等优点,近年来受到广泛关注。目前,柔性OPDs器件仍面临探测性能较低、机械稳定性偏差等问题,限制了其实际应用。中国科学院青岛生物能源与过程研究所团队发展了一类新型聚合物给体材料(PBPyT),并深入研究了其分子结构与堆积形貌之间的关系,从而大幅提升了柔性近红外OPDs的探测性能和机械稳定性。研究团队提出了局域化分子堆积调控的分子结构设计理念,通过引入噻二唑并吡啶(PyT)的强吸电子单元,增强... 详细 >>

  • 研究发现石墨烯中载流子浓度的尺寸依赖效应更多>>

    提高量子电阻芯片中霍尔器件的集成密度,是实现量子电阻多量值的关键。然而,霍尔器件尺寸微缩是否影响石墨烯基量子电阻性能,成为该领域亟待研究的科学问题之一。针对上述问题,中国科学院上海微系统与信息技术研究所研究团队,在同一石墨烯单晶衬底上,制备出具有不同沟道宽度的霍尔器件。实验结果表明,宽度减小导致实现完全量子化所需的磁场强度升高。研究团队通过费米速度测量与角分辨光电子能谱(ARPES)分析发现,能带结构变化和电子—电子相互作用是引起上述尺寸依赖效应的主要原因。团队进一步结合有限数据下的机器学习分析,确定了约360μm的沟道宽度,是电阻... 详细 >>

  • 碳纳米环单分子器件对称性调控研究取得进展更多>>

    单分子器件为探索纳米尺度电荷传输与化学反应提供了重要平台。长期以来,单分子器件依赖在分子末端引入锚定基团,以实现与电极的连接,从而形成以线性结构为主的器件架构,一定程度上限制了器件结构与功能的拓展。中国科学院化学研究所等团队基于碳纳米环带分子,构筑了环形架构的单分子器件。该体系无需传统锚定基团,利用碳骨架曲率诱导的π轨道极化,形成Au–π键合,降低了接触电阻。在外加电场作用下,器件可实现单分子C–C键的可控断裂与开环。这为分子电子学引入了新的环形架构,拓展了单分子器件在几何构型与功能设计上的空间。团队进一步研究了分子几何对称... 详细 >>

  • 可编程细胞芯片设计制备与浸润性调控取得进展更多>>

    生物材料表面的微观形态特征对细胞增殖、黏附和分化有重要影响。然而,表面特性调控细胞行为的具体机制仍不明确。目前,用于细胞调控的表面设计过于单一,难以同时满足高精度制造与结构多功能性的双重要求。飞秒激光无掩模光学投影光刻技术,采用数字微镜器件作为掩模板,能够快速制备高精度大面积的可编程细胞芯片,并有效调控细胞浸润性。近期,中国科学院理化技术研究所团队,在可编程细胞芯片设计、制备与浸润性调控方面取得进展。该工作提出了基于飞秒激光无掩模光学投影光刻技术,制备可编程细胞培养芯片,并将其应用于细胞行为研究。团队采用飞秒激光无掩模光... 详细 >>

  • 4英寸金刚石“自支撑”超薄膜快速制备成功实现更多>>

    金刚石具有的优异的导热和绝缘等性能,成为新一代大功率芯片和器件散热的关键材料。将芯片直接与金刚石键合来降低结温,被视为高性能芯片及3D封装的理想热管理方案。通常,金刚石薄膜合成是以Si作为基板材料,合成后通过化学刻蚀去除Si基板进而得到金刚石“自支撑”薄膜。此前,中国科学院宁波材料技术与工程研究所研发团队,制备出超低翘曲的4英寸金刚石“自支撑”超薄膜。近期,该团队在金刚石超薄膜高效剥离技术上再次取得进展,发展出4英寸级超低翘曲金刚石超薄膜的“自剥离”技术。通过对金刚石薄膜初期形核、生长的精准调控与工艺创新,合成后的4英寸金刚石膜(... 详细 >>

  • 研究实现水系锌电正极精准调控更多>>

    作为水系锌离子电池正极材料的候选材料,二氧化锰具有低成本、高理论容量和高工作电压的优势,但其固有缺陷限制了电化学性能。近日,中国科学技术大学研究团队在MnO2层间分别引入具有吸电子和供电子基团的有机分子,结合同步辐射共振非弹性X射线散射技术、X射线吸收谱和理论计算,证明具有不同电子效应的插层剂对MnO2电子结构的调控。结果表明,带吸电子基团的分子插层可促进Mn 3d-O 2p轨道杂化,降低晶场分裂能,增强与Zn的相互作用,进而改善离子传输动力学,展现出优异的倍率性能。科研团队选取含吸电子基团的7-乙酰氧基-4-甲基香豆素(AMC)有机分子、含供电子基团... 详细 >>

更多科普知识>>

量子纠错全要素首次系统集成

美国哈佛大学研究团队首次在一套集成量子系统中实现量子纠错所需的全部关键要素,向构建实用的大规模量子...

【人民日报海外版】“手到擒来”的...

微纳机器人是什么?它们是工作在微米至纳米尺度的“智能微型机器”,可完成运动、旋转、抓取和释放微小颗...

【科技日报】新型超材料实现电场热...

记者11月10日从中国科学技术大学获悉,该校超材料研究团队创新性提出了一种电热晶格超材料,并首次通过单...

深度思维正式推出“数学做题家AI”

《自然》杂志11月12日发表了一项重要成果:英国深度思维正式推出其开发的“数学做题家AI”AlphaProof,其...

超导量子比特相干时间纪录刷新

量子比特中信息保存时间太短,一直是阻碍实用量子计算机实现的最大难题。美国普林斯顿大学工程师在这一关...

新型钛酸锶薄膜低温电光性能创新高

在接近绝对零度,如4开尔文(约-269.15℃)的极低温度下,大多数电光材料都会“失灵”,性能急剧下降。在一项...

“超级合金”将熔点提升至2000摄氏度

“现有超级合金在室温下具有延展性,在高温下保持稳定,并具备抗氧化能力。但其安全使用温度上限最高仅为1...

类脑感知,机器人导航新帮手

如果没有卫星信号、无法地图建模,机器人还能靠什么来导航?最近,澳大利亚昆士兰科技大学研究团队在国际期...

视网膜下微芯片助黄斑变性失明患者...

由美国斯坦福医学院、英国莫菲尔德眼科医院、德国波恩大学等多家国际科研机构组成的团队,开发出一款视网...

“向上生长”突破芯片摩尔定律极限

随着芯片制造商不断缩小产品尺寸,他们正面临芯片计算能力的极限。如今,一款打破纪录的芯片巧妙地避开...

科学家在有机材料内观测到量子效应

英国剑桥大学卡文迪什实验室的科学家,首次在有机材料中观测到一种曾被认为仅存在于无机金属氧化物中的...

三名科学家因金属有机框架研究获202...

瑞典皇家科学院8日宣布,将2025年诺贝尔化学奖授予北川进、理查德·罗布森和奥马尔·M·亚吉三名科学家...

三名量子物理学家获2025年诺贝尔物...

在量子力学诞生百年之际,瑞典皇家科学院7日宣布,将2025年诺贝尔物理学奖授予约翰·克拉克、米歇尔·H...

李国齐、姚满:发展AI 融合人脑智慧

2017年问世的Transformer架构(编者注:一种深度学习模型),被认为是目前人工智能大模型的技术基石。其基于...

【新华社】中国科学家证实镍氧化物...

记者20日从中国科学院合肥物质科学研究院了解到,该院固体物理研究所刘晓迪研究员团队联合吉林大学黄晓丽...

科学家让两个原子核实现“远距离聊天”

一组国际科学家团队在量子计算领域取得重大突破:首次利用两个原子核的自旋实现了“量子纠缠态”,让原子...

钙钛矿-硅叠层太阳能电池钝化难题攻克

据最新一期《科学》杂志报道,一个国际光伏科研团队在钙钛矿-硅叠层太阳能电池产业化进程中取得重要进展...

3D打印超导体磁场强度创纪录

据新一期《自然-通讯》杂志报道,美国康奈尔大学研究人员开发出一种“一步式”3D打印方法,制造出性能创纪...

“曲线球”系统可绕障传输超高频信号

美国普林斯顿大学研究团队开发出一种创新“曲线球”系统,可高速稳定传递超高频信号。这一神经网络系统,...

混合芯片实现太赫兹波与光信号双向转换

瑞士洛桑联邦理工学院(EPFL)和美国哈佛大学科学家合作,研制出一款新型集成芯片,实现了太赫兹波与光信号...