当前位置 >> 首页 >> 学习园地
  • 锂硫电池用单原子催化剂研究获进展更多>>

    锂硫电池以硫转换反应为核心,具有高能量密度和成本优势,是下一代储能技术颇有潜力的候选者之一。但在实际运行过程中,硫转换反应的动力学通常较为缓慢,限制了电池的实际性能。单原子催化剂尤其是新兴的高熵单原子催化剂能够提升硫转换反应动力学,但其背后的化学机制尚未明晰,常被简单归结为协同或熵增效应。这阻碍了单原子催化剂的设计与性能优化。中国科学院金属研究所科研人员在前期研发高效锂硫电池催化剂的基础上,采用第一性原理计算与实验方法,揭开了这一“黑箱”,在单原子催化剂研究方面取得进展。研究发现,中心金属原子间的长程相互作用是影响催化性... 详细 >>

  • 电池供电的可穿戴重复经颅磁刺激设备研制成功更多>>

    近日,中国科学院自动化研究所与脑机接口北京市重点实验室,研发出一款电池供电的可穿戴重复经颅磁刺激设备(rTMS)。rTMS重量小于3公斤,而性能与商用大型设备相当,这为rTMS技术在家庭、社区及自由行动中的全场景应用提供了新可能。相较于药物治疗,物理神经调控技术因副作用小、靶向性好,成为临床脑疾病治疗的利器。以深部脑刺激为代表的有创神经调控技术在治疗帕金森病等领域取得进展。在无创神经调控中,由于人类进化形成的头皮、颅骨、脑脊液、脑膜等多层颅脑结构,将脑组织层层保护,使得精确而有效的无创神经调控变得困难,这是神经调控领域中的难题。1985年,... 详细 >>

  • 微电子所在纳米森林传感器应用研究方面取得新进展更多>>

    近日,微电子所健康电子研发中心黄成军-毛海央研究员团队在纳米森林传感器及其应用研究方面取得新进展。呼吸是支持人类生命活动的重要过程。呼吸频率和深度是反映运动强度的关键指标,呼吸模式与心肺功能密切相关。通过呼吸检测,可以实时了解运动者的身体状态,避免过度运动或运动不足,还可以评估运动者的心肺健康状况,为制定个性化运动计划提供依据。然而,传统的湿度传感器受限于其使用的结构和材料,存在灵敏度不高等不足。另外,当前多种应用于呼吸检测的湿度传感器依靠信号频率差异来分辨呼吸状态,这限制了它们识别更多行为种类的能力。为了解决以上问题,团... 详细 >>

  • 微电子所利用新型堆叠纳米片沟道表面处理技术研制成功接近理想开关的GAA晶体管更多>>

    堆叠纳米片全环绕栅(GAA)晶体管具有极佳的栅控特性、更高的驱动性能以及更多的电路设计灵活性,是主流集成电路制造继FinFET之后的核心晶体管结构。目前,三星电子(Samsung)、台积电(TSMC)与英特尔(Intel)等半导体巨头已经或者即将在3纳米及以下技术节点采用该器件进行工艺量产。然而,目前报道的堆叠纳米片GAA器件存在沟道界面态较大,难以实现理想亚阈值开关的难题,一个关键原因是新引入的GeSi/Si超晶格叠层在材料界面处,易受到集成热预算的影响产生Ge原子的扩散与再分布,导致纳米片沟道释放后在表面存在微量Ge原子残留,引起额外界面缺陷及载流子导电性能降低。 详细 >>

  • 科学家基于机器学习研发超高饱和磁感铁基非晶/纳米晶软磁材料更多>>

    随着高频大功率器件快速发展,系统能耗问题成为制约行业发展的瓶颈。若将电子控制系统比作人体,芯片如同大脑承担核心控制功能,负责数据处理、信号控制和逻辑运算等任务;而电感、变压器等磁性元器件则相当于执行各类生命活动的器官,负责完成能量存储、转换与传输等关键过程。尤其是,软磁材料的能效表现决定整个系统的能源利用率,其性能优劣影响系统的稳定性、效率和寿命。随着工作频率提升至MHz甚至GHz级别,传统软磁材料的性能短板日益凸显。这一问题在高功率密度应用场景中尤为突出,已成为制约电子系统向更高效率、更小体积、更轻量化发展的障碍。铁基非晶/... 详细 >>

  • 科研人员在单一铁电陶瓷片表面开发出全光控五态逻辑门器件更多>>

    多功能一体化的光电逻辑门(OLEGs)可快速实现信息处理和传输,在通讯技术、人工智能和计算系统等领域颇有潜力。具有差异性光电响应的光电探测器是OLEGs的重要组成部分。通常,传统的半导体光电探测器需要构建异质结构或结合多种光-电输入形式才能够实现差异化光电响应,增加了器件设计的复杂性。铁电材料是具有自发极化并且自发极化可随外电场重新取向的功能材料,在光场作用下具有反常光伏效应和光致热释电效应,且其大小和方向依赖铁电极化,为通过铁电极化设计实现OLEGs提供了可能。中国科学院上海硅酸盐研究所研究员易志国团队在多功能一体化铁电光电逻辑器件... 详细 >>

更多科普知识>>

新模型阐释磁性材料“半冰半火”相态

据美国能源部布鲁克海文国家实验室官网25日消息,物理学家在研究亚铁磁材料的一维模型时,发现了一种“半...

新型光电子芯片能效和带宽创纪录

来自美国哥伦比亚大学和康奈尔大学等机构的科学家,深度融合光子技术与先进的互补金属氧化物半导体电子技...

“全对全”互连设备展示高效远程纠缠

美国麻省理工学院研究人员开发了一款支持“全对全”通信的新型互连设备,可使网络中的所有超导量子处理器...

声子极化激元电激发首次实现

据最新一期《自然》杂志报道,美国纽约市立大学研究人员在创造新型光热材料方面迈出重要一步:他们首次实...

机器人与“脊髓假体”首次无缝集成

瑞士NeuroRestore团队开发出一种先进系统,能够将植入式脊髓神经假体与康复机器人无缝结合,通过发出精确...

谢晓明:传承“两弹一星”精神,攻...

中国科学院与“两弹一星”纪念馆的一隅,存放着一枚特殊的奖章,那是我的老师、中国科学院院士吴自良先生...

科学家发现新型有机金属分子“锫茂”

美国能源部劳伦斯伯克利国家实验室科学家领导的团队首次发现一种含有锫(Berkelium)的有机金属分子——...

实验证明动量空间存在“量子龙卷风”

德国维尔茨堡—德累斯顿卓越集群ct.qmat团队改进了原来的既定方法,首次通过实验证明了“量子龙卷风”(即...

首款太赫兹频段光电调制器面世

瑞士苏黎世联邦理工学院等机构的科学家,成功研制出首款能在太赫兹频段工作的调制器。太赫兹技术是6G演进...

新型手性有机半导体面世

来自英国剑桥大学和荷兰埃因霍芬理工大学等机构的科学家,研制出一种新型手性有机半导体。这种半导体能让...

光首次转化为“超固体”

研究人员利用激光首次制造出一种可以像流体一样流动的奇特固体。对它展开研究将有助于科学家更好地理解...

首个量子网络操作系统创建

由荷兰代尔夫特理工大学、荷兰量子技术研究所(QuTech)、奥地利因斯布鲁克大学、法国国家信息与自动化研...

最高电流和最高峰值功率拍瓦级电子...

美国斯坦福国家加速器实验室团队创造了有史以来最高电流、最高峰值功率的拍瓦级电子束。这束电子脉冲虽...

单自旋量子比特网络实现多路复用

据新一期《自然》杂志报道,美国加州理工学院领导的研究团队搭建了一个包含两个节点的量子网络,其中每个...

低能耗自旋波信息传输技术实现

瑞典哥德堡大学研究团队在最新一期《自然-物理学》上发表了室温下实现低能耗自旋波技术的重要研究成果。...

太字节数据“塞进”毫米级存储器

美国芝加哥大学研究人员开发出一种创新性的存储技术,利用晶体内的单原子缺陷来表示数据存储中的二进制数...

新型硅芯片能记录大量脑活动

美国哈佛大学团队开发出一种创新性的硅芯片,能够记录大量神经元间突触信号的细微变化。利用该芯片,团...

声波谐振器实现声子间高保真量子纠缠

虽然量子纠缠现象已在微观粒子中得到证实,但在日常物体之间却很难看到。美国芝加哥大学研究团队成功展示...

“奶酪刨丝器”制作超薄彩虹色金属片

研究发现,超薄铋片可以显示出神秘的磁性,该性能有助于让这种柔软的彩虹色金属成为制造绿色电子产品的神...

全球首台可扩展光量子计算机原型问世

加拿大Xanadu量子技术公司开发出全球首台可扩展光量子计算机原型。该公司在最新一期《自然》杂志上发表...