当前位置 >> 首页 >> 学习园地
  • 金属材料疲劳强度理论极限研究获进展更多>>

    疲劳强度是影响材料及构件可靠性的关键指标之一。提高材料疲劳强度,可以提高工程构件长期服役可靠性,有助于实现构件轻量化,能够提高能源利用效率。前期,中国科学院金属研究所研究员张哲峰团队等,将GCr15轴承钢拉-拉疲劳强度提高到1600 MPa,拉-压疲劳强度提高到1103 MPa,制备出具有超高比疲劳强度的近无微孔3D打印钛合金,突破了拉-拉比疲劳强度世界纪录。但是,探究材料疲劳强度的提升空间及优化原则,仍是疲劳领域的关键科学问题。近日,该团队报道关于金属材料疲劳强度理论上限的成果,提出金属材料抗疲劳设计“四原则”,并在冷拔珠光体钢丝中实现当前最高的拉... 详细 >>

  • 超薄柔性电子界面研究获进展更多>>

    近年来,随着可穿戴电子、脑机接口和神经康复等前沿技术迅速发展,迫切需要将精密电子器件如同“皮肤”一般贴合到器官组织上,实现对生理信号的采集和调控。然而,传统贴附方法往往导致器件内部产生巨大应力,尤其是当贴合在起伏不平的皮肤、大脑或神经表面时,器件内部脆弱的超薄金属线路和芯片很容易因应力集中而损坏,这成为柔性电子发展的一大瓶颈。近日,中国科学院化学研究所宋延林团队在打印墨滴行为控制等方面取得了系列进展。该团队联合首都医科大学附属北京天坛医院、新加坡南洋理工大学等单位,提出了一种新型的超薄膜材料转移策略——液滴打印。该方法利... 详细 >>

  • 微电子所在铁电二极管噪声研究及应用方面取得进展更多>>

    边缘人工智能系统因其密集的计算需求,对高质量的随机熵源有着较高要求。传统熵源会随温度变化以及频率增加而衰减。中国科学院微电子研究所集成电路制造技术全国重点实验室科研团队在研究中发现,铁电二极管(Fe-diode)的噪声特性完美契合具有高频和剧烈温度变化的边缘系统。团队从器件物理层面通过调控阻态以及读取电压稳定输出了频率及温度双独立的高密度散粒噪声,噪声密度比1/f噪声高两个数量级以上,且在−40 °C~125 °C范围内无衰减,为边缘人工智能系统提供了理想的随机熵源。依托这一理想随机熵源,团队基于3D 16层Fe-diode阵列开发了具有统一熵源及突触... 详细 >>

  • 研究揭示钙钛矿电子自旋态对高温析氧反应活性的调控机制更多>>

    近日,中国科学院大连化学物理研究所副研究员宋月锋等联合复旦大学汪国雄团队,在固体氧化物电解池(SOEC)阳极高温析氧反应(OER)性能调控研究中取得新进展。研究团队通过A位碱土金属掺杂,系统揭示了PrFeO3−δ钙钛矿体系中电子自旋态对高温OER性能的调控机制。SOEC具有电流密度高、法拉第效率高、过电势低等优势,被认为是实现二氧化碳(CO2)减排和能源高效转换的关键技术之一,钙钛矿氧化物是常见的SOEC阳极材料。大量研究表明,在碱性电解水OER过程中,钙钛矿的电催化OER性能与eg轨道电子数呈火山型关系,在eg电子数接近1时活性最高。然而,目前对高温OER催化剂电子... 详细 >>

  • 微电子所在POSIT浮点数SRAM存内计算宏芯片领域取得进展更多>>

    POSIT是一种新兴的浮点数格式,可更加高效地在不同数值范围内分配精度。其接近0值的数据可获得更高的计算精度,而对于极大或极小的数据值可适当舍弃一些精度以换取更大的数据表示范围。这种动态精度分配的特性非常适合AI算法,在相同数据位宽下(如POSIT8相比INT8)能实现更好的算法性能。此前,研究者针对POSIT的特殊格式设计了高效的计算硬件,但这些设计未能充分利用POSIT尾数长度可变的特性。如能设计出一种针对POSIT变长尾数的特点、动态节省尾数乘法计算代价的策略,将可以一种算法精度损失较小的近似计算方法来降低POSIT乘法计算中占据主导的尾数乘法计算功... 详细 >>

  • 液态金属基吸波材料研究取得进展更多>>

    中国科学院青海盐湖研究所研究员刘虎团队联合西北工业大学教授吴宏景团队,在液态金属基吸波材料领域取得进展。在电磁污染日益加剧与高端电子设备快速发展的时代背景下,高性能电磁波吸收材料已成为保障信息设备可靠运行的关键屏障。研究消纳盐湖中多元金属资源,发展基于液态金属驱动的低还原电位金属离子锚定复合吸波材料,在我国新一代电磁防护材料体系与智能装备抗干扰技术中高值利用盐湖资源,可助力世界盐湖产业基地与国家清洁能源高地的建设。尽管液态金属基材料因优异的界面极化能力和可调介电性能而备受关注,但其对低还原电位离子锚定效率低、热力学驱... 详细 >>

更多科普知识>>

钙钛矿-硅叠层太阳能电池钝化难题攻克

据最新一期《科学》杂志报道,一个国际光伏科研团队在钙钛矿-硅叠层太阳能电池产业化进程中取得重要进展...

3D打印超导体磁场强度创纪录

据新一期《自然-通讯》杂志报道,美国康奈尔大学研究人员开发出一种“一步式”3D打印方法,制造出性能创纪...

“曲线球”系统可绕障传输超高频信号

美国普林斯顿大学研究团队开发出一种创新“曲线球”系统,可高速稳定传递超高频信号。这一神经网络系统,...

混合芯片实现太赫兹波与光信号双向转换

瑞士洛桑联邦理工学院(EPFL)和美国哈佛大学科学家合作,研制出一款新型集成芯片,实现了太赫兹波与光信号...

“超表面”器件能集成光子量子操作

据最新一期《科学》杂志报道,美国哈佛大学研究人员开发出一种新型光学器件,即“超表面”,可在单一的...

反物质量子比特首次演示

欧洲核子研究中心(CERN)的BASE合作组23日在《自然》杂志上发表了一项突破性成果:首次让一个反质子在量子...

全球首个二维半金属材料获验证

德国于利希研究中心的研究人员研制出全球首个二维半金属材料并获实验证实。该材料是一种仅允许单一自旋...

王守觉:一生求新只为摆脱“洋拐棍”

改革开放后,国内曾一度热衷引进国外的先进科技成果,而忽视自主创新研发。在中国电子学会的一次年会上,半...

电子—光子—量子一体化芯片系统诞生

据最新一期《自然-电子学》杂志报道,美国波士顿大学、加州大学伯克利分校和西北大学团队联合,开发出全球...

反铁磁材料电信号实现可读可控

反铁磁材料因其潜在的高速信息处理能力,近年来受到科学界高度关注。但由于其自旋信号难以探测与控制,...

全自动机器人高速检测材料关键特性

美国麻省理工学院(MIT)团队开发出一种全自动机器人系统,可大幅加快对新型半导体材料的性能分析和测试速...

混合量子系统实现超精密传感

丹麦哥本哈根大学尼尔斯·玻尔研究所团队开发出新型可调量子传感技术——一种混合量子系统,能帮多种技术...

“热淬火”技术能切换量子材料导电状态

美国东北大学与布朗大学等机构科学家通过精确控制加热和冷却,即所谓的“热淬火”技术,让量子材料在导电...

低温下精准控制量子比特的芯片问世

量子计算机要真正实现大规模实用化,关键在于如何稳定、精准地控制海量量子比特。澳大利亚悉尼大学与新南...

石墨烯中首次演示量子自旋霍尔效应

荷兰代尔夫特理工大学科学家首次在无需外部磁场的条件下,观测到石墨烯中的量子自旋流。这一突破性发现为...

光学AI处理器可高效准确分类无线信号

据最新一期《科学进展》杂志报道,美国麻省理工学院团队开发出一种专为无线信号处理而设计的全新人工智...

微波技术将量子比特出错率降至千万...

英国牛津大学研究团队利用微波技术,将量子比特操控的错误率降至千万分之一,达到前所未有的水平。这项发...

世界首台非硅二维材料计算机问世

硅在支撑智能手机、电脑、电动汽车等产品的半导体技术中一直占据着王者地位,但美国宾夕法尼亚州立大学领...

最快量子随机数生成器面世

由沙特阿卜杜拉国王科技大学与阿卜杜勒·阿齐兹国王科技城科学家联合主导的研究团队,研发出迄今基于国...

气流驱动软体机器人问世

据最新一期《科学》杂志报道,荷兰原子与分子物理研究所团队制造了一款软体机器人,它没有人工智能芯片、...