石墨烯具有二维薄层结构,是一种具有潜力的新型润滑材料。近年来的研究表明,具有原子厚度的石墨烯在微观接触尺度下具有超滑特性,在宏观接触方式下展现出摩擦学特性,但是均依赖于理想的石墨烯表界面结构。因此,实现石墨烯摩擦表界面结构的调控对于获得优异的摩擦学性能、推动其实际应用具有重要意义。
近日,中国科学院兰州化学物理研究所磨损与表面工程课题组发现摩擦力致氧化石墨烯向理想石墨烯表界面结构原位转化的现象,并与清华大学教授马天宝团队合作,结合实验和分子动力学模拟,揭示结构演变过程的分子作用机理与规律,提出一种利用简便的摩擦力作用,即可实现选择区域的石墨烯表界面结构调控的新方法。
研究发现,在宏观球-盘接触摩擦实验过程中,摩擦轨道上的氧化石墨烯发生向完美石墨烯结构的原位大尺寸转变。实验检测到该过程伴随氧化石墨烯羟基官能团的减少及水分子的溢出。其中,摩擦力作用而非静压力驱动该转化过程;当与有活性键的配副摩擦时,更有益于该转变现象的发生。研究人员进一步结合分子动力学模拟计算,揭示转变过程的分子作用机制,即在滑移摩擦力剪切作用驱动下,激活氧化石墨烯的羟基官能团与摩擦配副上的活性键及相邻石墨烯片层上羟基官能团之间的化学相互作用,诱导发生C-OH键的断裂。断裂后碳原子由sp3态向能量更稳定的sp2态转化,实现六元环结构的自修复;断裂后-OH基或与配副悬键结合,或夺取相邻片层-OH上的氢生成水分子溢出。
整个摩擦过程中,氧化石墨烯向石墨烯结构的转变使摩擦系数进一步降低且平稳,因此利用该摩擦结构演变现象,可主动调控、获得摩擦界面的理想石墨烯结构,实现平稳且长效的润滑状态,对于推动其实际应用具有重要价值;利用结构转化过程中伴随的摩擦力致水分子脱溢行为,通过监测水分子,可为力致传感提供新思路。
近期,相关研究结果在线发表在Advanced Functional Materials上,研究工作得到国家自然科学基金航天联合项目、面上项目和中科院青年创新促进会项目的资助。
图1.宏观摩擦过程中,氧化石墨烯向理想石墨烯结构转化的实验现象
图2.摩擦过程中滑移界面结构转化的分子作用机理
相关新闻: |
兰州化物所石墨烯复合材料及器件研究取得进展 |
兰州化物所发展出纳孔石墨烯一步合成新方法 |
上海微系统所等制备出手性可控的石墨烯纳米带 |
学习园地