美国俄亥俄州立大学声称氧化镓(β-Ga2O3)横向晶体管的功率品质因数最高,为376MW / cm2。研究人员使用了由钛酸钡(BaTiO3)构成的绝缘体,该钙钛矿氧化物结合了极高的介电常数和高击穿场强(> 8MV/cm)。
根据仿真,电介质可以减小给定偏置下的峰值场。射频(RF)和电力电子设备可以受益于更高的平均电场,从而实现提高效率、功率密度和速度。该团队评论说:“将基于钙钛矿氧化物的极端介电常数介质集成到常规和宽禁带半导体中,如Si、GaAs、GaN和SiC,可以使射频和电力电子设备的性能得到前所未有的改善。”
BaTiO3电介质的使用还使通道电荷密度更高,达到1.6x1013/cm2,从而降低了导通电阻。β-Ga2O3的理论击穿场强为8MV/cm,远大于氮化镓(GaN)的3MV/cm。β-Ga2O3的一个缺点是迁移率较低。较高的通道电荷可以在某种程度对此进行补偿。
研究人员在以极限k BaTiO3为绝缘体的β-Ga2O3上制造了横向金属-绝缘体-半导体场效应晶体管(MISFET)。沟道区域是使用880℃金属有机化学气相沉积(MOCVD)在铁掺杂的β-Ga2O3衬底上形成β-(AlxGa1-x)2O3/Ga2O3层。有意掺杂的5x1018/cm3铝/氧化镓层是硅烷中的硅(SiH4)制成的。
使用光刻技术定义源极和漏极区域,然后进行硅离子注入,并通过900°C退火30分钟进行激活。然后将源极和漏极蚀刻至β-Ga2O3,并退火由钛/金/镍形成的金属触点。
使用来自烧结的BaTiO3源的670°C RF溅射法涂覆BaTiO3。BaTiO3的厚度为73nm,略低于75nm的靶材。研究人员计划用Al2O3中间层来改善其性能,避免溅射对沟道电阻产生负面影响。源极/漏极欧姆接触也遭受溅射降解,这可以通过在BaTiO3之后施加金属和/或通过优化金属堆叠来改善。
该器件通过台面隔离蚀刻和镍/金/镍肖特基栅极沉积完成。栅漏间距(Lgd)介于0.5μm至6μm之间。栅极长度为0.7μm。电容电压测量表明BaTiO3的介电常数为235,此为介电常数的下限估计值。
最低导通电阻为13.6Ω-mm,已标准化为栅极宽度为0.5μmLgd和1.5μmLsd。漏极电流达到359mA/mm,这是在直流条件下,任何外延生长的β-Ga2O3侧向晶体管器件中报告的最高电流,只有在转移到高导热性衬底(如金刚石和金刚石)的β-Ga2O3纳米膜晶体管中可以获得更高的电流。
三端击穿电压(Vbr)随着Lgd的增加而增加,对于6μm的间距,最高值为918V。对于0.5μm的Lgd,在201V击穿。击穿时的平均电场从0.5μmLgd时的4MV/cm降低到6μm时的1.5MV/cm。
反向偏置电流测量表明,栅极泄漏会限制击穿性能。仿真表明,栅极拐角处的电场尖峰,这会增加器件的栅极电流泄漏并导致电介质击穿。
功率因数Vbr2/RspON平衡了击穿与特定电阻之间的权衡,并针对源漏区(Lsdxwidth)进行了归一化。所有器件的品质因数均高于147MW/cm2,对于4.7μmLsd和3μmLgd,其640V Vbr和1.08mΩ-cm2RspON达到376MW/cm2。该团队声称376MW/cm2的数字是β-Ga2O3晶体管的最高报告值。
相关新闻: |
宁波材料所研发新型等离激元结构色材料及制备技术 |
优化SiC MOSFET性能 |
学习园地